8.2 Exponential Functions and Average Rate of Change

Exponential Functions

What is different about an exponential function? The variable

y=a.bx a. Initial value (y-int) b. Growth/decay factor

We can have equations that either represent exponential growth or exponential decay. Let's see what happens when we graph:

To determine what makes our b value a growth factor or a decay factor, find each of the following

$$g(x) = \left(\frac{1}{2}\right)^x$$

 Growth Factor
Growth Factor

1) Determine the initial value and the growth or decay factor for the equations below.

b.
$$y = 23(0.67)^{x}$$

c.
$$y = 525(0.86)^{x}$$

Another way to think about the growth/decay factor is to ask yourself, "What value is attached to the exponent?"

The growth/decay RATE is the percent change between each output value of the function.

Let's see if you can figure out how to find the growth/decay rate by looking at the following examples:

Growth rate: 23%

Growth rate: 64%

Decay rate: 25%

Decay rate: 61%

b=1.23 f(x)=3(1.23)x q(x)=0.5(1.64)x h(x)=2(3)x

k(x)=0.4(0.39)x

Growth Rate	Decay rate
b-1	1-6

How far is the growth/decay factor from 1?

2) Identify the initial value, the growth or decay factor, and the growth or decay rate for each of the functions

a. f(x)=4(0,78)x

IV: 4

DF: 0.78 BR: 22%

b. y = 5(1.47)x

IV:5 6F:1.47 GR:47%

c. g(t)=0.6(1.19)^t

GF: 1.19 GR: 19%

d. y = 105 (0,36)x

IV: 1.5

DR:64% DF: 0.36

e. h(x)= 3(含)x

TV:3

DF: == 0.4

DR: 60%

f. $k(x) = 2 - 2^{x}$ IV: 2

GF: 2 GR: 100%

3) Find the growth or decay rate factor for the functions below and state the growth or decay rate.

a.f(x)=(605 \$

b. h(t)=(0.68)

c. y = 10463x

GF: 1.22

DF: 0.31

6R: 22%

DR: 69%

4) Find a bank account balance if the account starts with \$100, has an annual growth rate of 4%, and the money left in the account for 12 years.

a= 100

GR= 4% = .04

1 growth/decay factor

GF= 1.04

y = 100(1.04)12 = \$ 160.10

1) In 1985, there were 285 cell phone subscribers in the small town of Centerville. The number of subscribers increased by 75% per year after 1985. How many cell phone subscribers were in Centerville in 1994?

a= 285

1994-1985=9

6R: 75%=0.75

v=285(1.75)9=43871.99

About

6F: 1.75 6) Each year the local country club sponsors a tennis tournament. Play starts with 128 participants. During each round, half of the players are eliminated. How many players remain after 5 rounds?

Average Rate of Change

Average Rate of Change

- a. Give an example of a function that has a constant rate of change. Give an example of a graph and an equation.
- b. Give an example of a function that does not have a constant rate of change.

$$y = -2x^2 + 7x + 2$$

Because not all equations have a constant rate of change, we have to take a look at what we call the average rate of change. This looks at the rate of change of a function over a specified interval. These intervals refer to the x-values

Average Rate of Change Formula	Which also means
On the interval [a,b], $\frac{f(b)-f(a)}{b-a}$	$\frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} $ [Slope Fig.

1) Find the average rate of o rate of change for each function over the given interval.

a.
$$f(x) = x^2 - 2$$
; [-1, 2]

$$\frac{1}{2} = 1 - 2$$

2) Find the slope between the two points.
a. med (2,5) and (6,17)

Steps for Average Rate of Change

- i) Plug x's into equation to get y's
- Z) Find the slope between the two points

slope ex: Find the average rate of change for $y = x^2 - 2x + 1$ over the interval [-2, 3].

$$x_{1} = -2 \quad y = (-2)^{2} - 2(-2) + 1 = 9 \quad (-2, 9)$$

$$x_{2} = 3 \quad y = (3)^{2} - 2(3) + 1 = 4 \quad (3, 4)$$

$$\frac{x}{7}$$
 $\frac{x}{7}$ $\frac{y}{7}$ $\frac{x}{5} = -1$

2) Find the average rate of change for each function over the specified interval.

a. over [-1, 6]
$$y = 5x - 4$$

Lineconstant rate of change, slope is 5

(b.) over [2, 5]
$$y = -x^2 + 5$$

$$x_1 = 2$$
 $y = -(2)^2 + 5 = 1$ (2,1)

$$x_2=5$$
 $y=-(5)^2+5=-20 (5,-20)$

$$\frac{x}{2}$$
 | $\frac{x}{2}$ | $\frac{x}{3}$ | $\frac{-21}{3}$ = $\frac{-7}{3}$

d. over [1,4]
$$y = 2x^2 - 4x + 1$$

© c. over [-8, -4]
$$y = 2|x+7|+3$$

0

$$x_1 = -8$$
 $y = 2 | -8 + 7 | +3$
= $2 | -1 | +3$
= $2(1) +3$
= 5