
6.2 Switching Forms and Quadratic Applications

Switching Between Forms

1) Write the equation in all three forms.

a.
$$y = -2(x-1)(x+3)$$

Standard Form

Intercept Form

$$y=-2(x-1)(x+3)$$

$$y=-2(x^{2}+3x-1x-3)$$

$$y=-2(x^{2}+2x-3)$$

$$| y=-2x^{2}-4x+6|$$

Vertex Form

b)
$$y = x^2 - 8x + 15$$

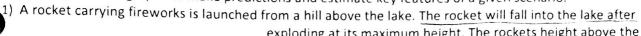
Standard Form

$$x-int: 3, 5$$
 $x=1 P P$
 $x=1 P P$
 $y=(x-3)(x-5)$

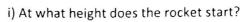
Vertex: $(4,-1)$ $x=1$
 $y=(x-4)^2-1$
 $y=(x-3)(x-5)$

c.
$$y = 2(x + 1)^{2} + 4$$

Standard Form
 $Y = 2(x+1)(x+1) + 4$
 $Y = 2(x^{2}+1x+1x+1) + 4$
 $Y = 2(x^{2}+2x+1) + 4$
 $Y = 2x^{2}+4x+2+4$
 $Y = 2x^{2}+4x+6$


Vertex Form

Quadratic Applications

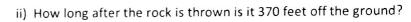

Different parts of the parabola can tell you certain pieces of information, and you will need to know each of these to be able to interpret the graph.

Critical Part	Graph	Key words
y —intercept	time time	Starting height, initial height
x —intercepts	time	Time it hits ground/lands
y —part of vertex	·Neight	Max/min height
x —part of vertex	tine	Time of max/min height
Random coordinate point	time time	When is the object — high? How high is it after seconds?

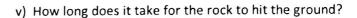
Example 1: Use the graphs to make predictions and estimate key features of a given scenario.

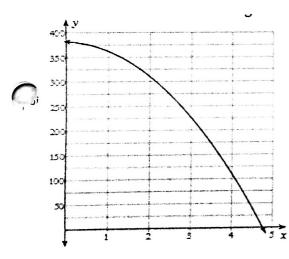
exploding at its maximum height. The rockets height above the surface is modeled by the parabola below.




ii) How high is the rocket after 1.5 seconds?

iii) At what height will the rocket explode?


iv) How long will it take the rocket to hit the lake?


time (seconds) 2) A rock is thrown from the top of a tall building. The distance, in feet, between the rock and the ground tseconds after it is thrown is modeled by the parabola below.

iv) If a person is walking under the building 4 seconds after the rock is thrown, will the rock hit the person?

height (fleet)

3) The path of an arrow shot in the air can be modeled by the function: $y = -3(x-4)^2 + 142$, where y is the height, in feet, of the arrow above ground x seconds after it is released. i) What is the maximum height the arrow reaches?

142 ft (y of vertex) V: (4, 142) I use to decide

142 ft

ii) After how many seconds does it reach that height?

H seconds (x of vertex)

iii) How high will the arrow be at 6 seconds? At 8 seconds?

iv) At about what time will the arrow land on the ground?