\qquad

4.1 Quadratic Applications

Date \qquad Period \qquad
Sketch the graph of each function, labeling the dimensions of your window. Then identify each key feature.

1) $y=\frac{1}{2} x^{2}+\frac{5}{2} x+5$
2) Is the vertex a max or a min?

Vertex:
y-intercept:
x-intercept(s):
Coordinate point at $x=-10$:
4) Is the vertex a max or a min?

Vertex:
y-intercept:
x-intercept(s):
Coordinate point at $x=-10$:
5) $y=-x^{2}+x+\frac{3}{4}$
6) Is the vertex a max or a min?

Vertex:
y-intercept:
x-intercept(s):
Coordinate point at $x=-10$:
7) $y=-2 x^{2}+2 x-4$
8) Is the vertex a max or a min?

Vertex:
y-intercept:
x-intercept(s):
Coordinate point at $x=-10$:
9) $y=-2 x^{2}-6 x-3$
$y=-2 x^{2}-6 x-3$
10) Is the vertex a max or a min?

Vertex:
y-intercept:
x-intercept(s):
Coordinate point at $x=-10$:
11) $y=x^{2}+9 x+21$
12) Is the vertex a max or a min?

Vertex:
y-intercept:
x -intercept(s):
Coordinate point at $x=-10$:

Use the graph in the problem to answer each question.

13) Jason jumped off of a cliff into the ocean in Acapulco while vacationing with some friends. His height as a function of time could be modeled by the function below. where x is the time in seconds and h is the height in feet.
a. Estimate how long it took Jason to reach his maximum height? \qquad
b. What was the highest point that Jason reached? \qquad
c. Jason hit the water after how many seconds? \qquad
d. About what was Jason's height after 2.5 seconds? \qquad

Answer each question below.

14) A rocket is launched from atop a 192 foot cliff with an initial velocity of $64 \mathrm{ft} / \mathrm{s}$ represented by the equation $h=-16 t^{2}+64 t+192$.
a. Sketch a graph of the situation. Be sure to label your axes.
b. What is the maximum height of the rocket? \qquad
c. How long will it take the rocket to reach it's maximum height? \qquad
d. How high is the rocket after 2.5 seconds? \qquad
e. How long will it take the rocket to hit the ground after it is launched? \qquad
e. What is an appropriate domain and range for this situation?
15) You are trying to dunk a basketball. You need to jump 2.5 feet in the air to dunk the ball. The height that your feet are above the ground is given by the function $h=-16 t^{2}+12 t$.
a. Sketch a graph of the situation. Be sure to label your axes.
b. What is the maximum height your feet will be above the ground? \qquad
c. Will you be able to dunk the basketball? Explain.
d. What is an appropriate domain and range for this situation?
16) A diver is standing on a platform 24 feet above the pool. He jumps from the platform with an initial upward velocity of $8 \mathrm{ft} / \mathrm{s}$. Use the formula $h=-16 t^{2}+8 t+24$, where h is his height above the water, and t is the time.
a. Sketch a graph of the situation. Be sure to label your axes.
b. What is the maximum height of the diver? \qquad
c. How long did it take the diver to reach the maximum height? \qquad
d. How long will it take for him to hit the water? \qquad
e. What is an appropriate domain and range for this situation?
17) One of the games at a carnival involves trying to ring a bell with a ball by hitting a lever that propels the ball into the air. The height of the ball is modeled by equation $h=-16 t^{2}+38 t$.
a. Sketch a graph of the situation. Be sure to label your axes.
a. What is the maximum height the ball will reach? \qquad
b. If the bell is 25 feet above the ground, will it be hit by the ball? \qquad
c. What is an appropriate domain and range for this situation?
