8.2 Exponential Functions and Average Rate of Change

2) Give an example of an equation that does not have a constant rate of change.

Because not all equations have a constant rate of change, we have to take a look at what we call the average rate of change. This looks at the rate of change of a function over a specified interval. These intervals refer to the X-coordinates.

Average Rate	e of Change Formula	Which also means				
For [a,b]	f(b)-f(a) b-a	$\frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = \frac{rise}{run}$	slope?			

Steps for Average Rate of Change

- 1) Find y-coordinates of x's from interval
- 2) Label coordinats as (x1, y1) and (x2, y2)
- 3) Find slope between points

ex: Find the average rate of change for

$$y = x^2 - 2x + 1$$
 over the interval [-2, 3].

$$x=-2$$
 $y=(-2)^2-2(-2)+1=9$

$$x=3$$
 $y=(3)^2-2(3)+1=4$ (3)

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 9}{3 - (-2)} = \frac{-5}{5} = \boxed{-1}$$

3) Find the average rate of change for each function over the specified interval.

a.
$$y = 5x - 4$$
 over [-1, 6]

c.
$$y = 2|x + 7| + 3$$
 over [-8, -4]

$$x=-4$$
 $y=2|-4+7|+3= 2|3|+3=9$

b.
$$y = -x^2 + 5$$
 over [2, 5]
 $x = 2$ $y = -(2)^2 + 5 = 1$ $\begin{pmatrix} 2 & 1 \\ x_1 & y_1 \end{pmatrix}$
 $x = 5$ $y = -(5)^2 + 5 = -20$ $\begin{pmatrix} 5 & -20 \\ 5 & -20 \end{pmatrix}$
 $\frac{-20 - 1}{5 - 2} = \frac{-21}{3} = \begin{bmatrix} -7 \\ 1 & 1 \end{bmatrix}$

Exponential Functions

What is different about an exponential function? The Variable

is in the exponent

 $y = a \cdot b^x$ a = initial value (y-int)b= growth/decay

We can have equations that either represent exponential growth or exponential decay. Let's see what happens when we graph:

To determine what makes our b value a growth factor or a decay factor, find each of the following

$$f(x) = 2^{x}$$

$$a = 1$$

$$a = 1$$
 $b = 2$

$$g(x) = (1/2)^{x}$$
 $a = 1$ $b = \frac{1}{2}$

$$a = 1$$

$$b = \frac{1}{2}$$

<i>x</i>	-2	-1	0	1	12	3	4	_
у	0.25	0.5	١	2	4	8	16	

	= 1.	(72)					
x	-2	-1	0	1	2	3	4
у	4	2	1	.5	,25	0.125	.0625

Growth Factor ex: 2, 18.7, 4 P > 1

ex. 0.37, = **b**41

4) Determine the initial value and the growth or decay factor for the equations below.

a.
$$y = 60 \cdot 1.41^x$$

b.
$$y = 23 \cdot 0.67^x$$

c.
$$y = 525 \cdot 0.86^x$$

Initial: 60

Growth factor: 1.41

(Decay factor)

Another way to think about the growth/decay factor is to ask yourself what each value is being multiplied by each time.

5) Determine the growth/decay factor for each table below.

0.11 0.33 1 43 ×3 ×3

Dividing by 4

1 2

0.5 0.13

Dividing by 4

is the same a

multiplying by 2

The growth/decay RATE is the percent change between each output value of the function.

Lot's see if you can figure out how to find the growth/decay rate by looking at the following examples:

$$\bigcirc(x) = 3 \cdot 1.23^x$$

$$g(x) = 0.5 \cdot 1.64^x$$

$$h(x) = 2\left(\frac{3}{4}\right)^x$$

$$k(x) = 0.4 \cdot 0.39^x$$

Growth rate: 23%

Growth rate: 64%

Decay rate: 25%

Decay rate: 61%

Growth Rate	Decay rate
Growth > b-1	1-be Decay factor

6) Identify the initial value, the growth or decay factor, and the growth or decay rate for each of the functions below.

a.
$$f(x) = 4 \cdot 0.78^x$$

b.
$$y = 5 \cdot 1.47^x$$

c.
$$g(t) = 0.6 \cdot 1.19^t$$

d.
$$y = 1.5 \cdot 0.36^x$$

$$e. h(x) = 3\left(\frac{2}{5}\right)^x$$

$$f. k(x) = 2 \cdot 2^x$$

7) Find the growth or decay rate factor for the functions below and state the growth or decay rate.

the growth or decay rate factor for the functions below
$$t$$
 a. $f(x) = 1.05^{4x} = (1.05^4)^{x}$ b. $h(t) = (0.68)^{x}$ = 1.22 x = 0.31 x

b.
$$h(t) = (0.68^3)$$

c.
$$y = 1.46^{3x}$$

TIL

x=5

DF: 0.31 T:I

DR: 0.69 69%

8) Find a bank account balance if the account starts with \$100, has an annual growth rate of 4%, and the money left in the account for 12 years. GR=.04

$$y = 0.04$$
 $y = 100 \cdot 1.04^{12} \approx 4160.10$

9) In 1985, there were 285 cell phone subscribers in the small town of Centerville. The number of subscribers increased by 75% per year after 1985. How many cell phone subscribers were in Centerville in 1994?

y, Each year the local country club sponsors a tennis tournament. Play starts with 128 participants. During each round, half of the players are eliminated. How many players remain after 5 rounds?