6.4 Using a Table

1) Use the table to estimate key features of a given scenario.

.e following table represents the movement (in feet) of a soccer ball after x seconds.

sec	0	1	2	3	4	5	6	7	8	
seex	0	7	12	15	16	15	12	7	0	1st Rate of Change
ji) At wh	at hei	1 + !	s the 30	3 +	all-s te rt	1~~	د کا	5 - 1	76	I and Rate of Change
	0	feet	-	(0:	econd	ls)				is constant for quadratics

ii) How high is the soccer ball after 6 seconds?

iii) How long does it take the ball to hit the ground again?

(where height is O feet)

iv) After how many seconds is the ball at its maximum height?

seconds 4

$$y = a(x-p)(x-q)$$

 $y = a(x-0)(x-8)$
 $7 = a(1-0)(-8)$
 $7 = a(1)(-7)$
 $7 = -7a$

$$y = -(x-0)(x-8)$$

2) The following table represents the movement of a swinging pendulum in centimeters after x minutes.

x 7 8 9 10 11 12 13 14 15 y 62 44 30 20 14 12 14 20 30
yem 62 44 30 20 14 12 14 20 30

Fill in the missing blanks

ii) What is the minimum height of the pendulum?

. 2nd RoC is constant, so this is a goodratic

12 cm

iii) After how many seconds does is the pendulum 20 cm off of the ground?

iv) Write an equation to model the situation.

$$y = \alpha(x-h)^2 + K$$

 $y = \alpha(x-12)^2 + 12$
 $14 = \alpha(11-12)^2 + 12$
 -12
 $2 = \alpha(-1)^2$

$$2 = 10$$

 $2 = 0$
 $y = 2(x-12)^2 + 12$