2.1 Classifying Numbers

$$5^2 = 25$$

$$(-4)^2 = 16$$

$$\sqrt{64} = 8$$

$$\sqrt{-100} = 7$$

It is impossible to take the square root of a negative number; it doesn't exist. That is why these numbers are called _______numbers.

$$i = \sqrt{-1}$$

In order to find the square root of negative numbers, take the square root as

- 1) Find each root.
- a) $\sqrt{-25} = 5$

b) $\sqrt{-81}$ 9

c) $\sqrt{-121}$

d) $\sqrt{-16}$

- e) $\sqrt{-100}$ i 0
- f) $\sqrt{-169}$ 131

reason we will care so much about imaginary numbers in this class is that it will assure that every problem has a solution. The most common application outside of this class is for calculations with electricity.

- 2) Identify the real and imaginary part of the following complex numbers:
- a) 6 + 5i

()

Real: 6

Imaginary: 5

b) 8 - 3i

Real: 8

Imaginary: -3

c) -4 - 7i

Real: -4

Imaginary 6-7

Every number can be classified based on its characteristics. Below we are going to draw a nesting model for number classification.

Set	Symbol	Description	
Complex	C	Real part & imaginary part	- '
Real	R	Normal numbers, anything without an i	
lmaginary	I	i = J-1	-
Rational	Q	Any number that can be written as a fraction; decimals that end or have a pattern ex: 2, 3, 0.18, 5.333	-
Irrational	No Symbol	Decimals that go on forever and have no pattern, ex: 17, 16, 1.782139812 imperfect roots	1
Integer	Z	Positive & regative numbers with no decimal ex: -6, -91, 7, 2, 0	-
Whole	W	Integers O and above exi. 0, 1, 2, 3	-
Natural	. M	Integers 1 and above ex: 1,2,3	

When classifying numbers, you want to make sure to Simplify the number first.

3) Name the set or sets that each number belongs to. Circle the most specific set:

a)
$$\sqrt{81} = 9$$

b)
$$\frac{0}{-2} = 0$$

c)
$$\sqrt{\frac{279}{3}} = \sqrt{93}$$

d)
$$\sqrt{225} = 15$$

e)
$$\frac{176}{64} = 2.75$$

f)
$$\frac{68}{40} = 1e^{7}$$

Test your understanding

Determine if each statement is always, sometimes, or never true:

- a. If a number is rational, it can be irrational too.
- b. An integer is a whole number.
- c. A natural number is a real number.
- d. A whole number is a natural number.