10.5 Two-Column Proofs and Application Problems

Two Column Proofs

etimes you will be asked to give a more formal proof, which is traditionally done in a two-column format. The left column is where you state what you know, and the right column is where you state how you know it.

Important Properties		
Addition or Subtraction	Adding or subtracting numbers ex: 2+3=5 (Addition) 10-6=4 (subtraction)	
Multiplication or Division	Multiplying or dividing numbers ex: $6.2 = 12$ (Multiplication) $\frac{20}{5} = 4$ (Division)	
Substitution	Plugging stuff in, substituting for something eise ex: For $5x+3$, $x=-1$, so $5(-1)+3=-2$	
Reflexive	Something equals itself ex: a=a	
Commutative	Multiplication order doesn't matter ex: 5.3 = 3.5, ab = ba	
Transitive	If $a=b$ and $b=c$, then $a=c$ ex: $x=4$, $x=y$, $y=4$	
Vertical Angles	Vertical angles are congruent	
Corresponding Angles	Corresponding angles (angles in the same spot between top & bottom) are congruent	
Alternate Interior Angles	Alternate interior angles are congruent	

Questions to ask yourself when writing a similarity two-column proof:

- 1) What do I know before I start any of the math? (This is your given information)
- 2) Can I show that any of the angles are congruent?
 - If yes, how?
- 3) Can I show that the side lengths are proportional?
 - Once you set up the fractions, what are the names of the sides you used?
- 4) What similarity theorem fits the situation? Write the similarity statement and how you know.

We are going to use the informal proofs to write two-column proofs. **Nothing different is happening than what you did in 10.4**; you are doing the same thing and then justifying each step that you took.

The first thing that you should list in any two-column proof is the ______ information.

1) Prove that the two triangles are similar.

Statement	Reason
KL is parallel to EF	Given
KL is parallel to EF	Reflexive property
LJKL = LJEF	Corresponding angles
DJKL ~ DJEF	AA Similarity

2) Prove that the two triangles are similar

$$\frac{35}{84} = \frac{65}{156}$$

$$0.42 = 0.42$$

Statement $\angle QKP \cong \angle MKL$ $\frac{35}{84} = \frac{65}{156}$ $\frac{PK}{KM} = \frac{QK}{KL}$ $\Delta QPK \sim \Delta LMK$

Reason		
Vertical angles		
Division property		
Substitution property		
SAS Similarity		

3) Prove that the two triangles are similar.

ΔEDC ~

$$\frac{4^{2}}{28} = \frac{33}{22} = \frac{39}{26}$$

$$1.5 = 1.5 = 1.5$$

Statement	Reason
$\frac{42}{28} = \frac{33}{22} = \frac{39}{26}$	Division property
DE - CE - DC	Substitution property
DEDC ~ DUNW	sss Similarity
	0

Application Problems

1) A tree 24 feet tall casts a shadow 12 feet long. Brad is 6 feet tall. How long is Brad's shadow?

2) A tree with a height of 4m casts a shadow 15 m long on the ground. How high is another tree that casts a

$$\frac{4}{x} \times \frac{15}{20}$$
 $\frac{15x = 80}{15}$
 $x = 5.33 \text{ M}$

3) A girl 160 cm tall, stands 360 cm from a lamp post at night. Her shadow is 90 cm long. How high is the lamp

01

$$\frac{160}{x}$$
 $\times \frac{90}{450}$

$$\frac{90 \times = 72000}{90}$$

 $\times = 800 \text{ cm}$

Big idea of word problems:

One sentence/piece at a time.