\qquad

8.2 Exponential Models

Date \qquad Period \qquad

Calculate the balance of each account.

1) You put $\$ 2000$ into a college savings acocunt for four years. The account pays 6% interest annually.
2) You put $\$ 1500$ into a college savings acocunt for ten years. The account pays 4% interest annually.
3) Suppose you invest $\$ 2000$ in a savings account that pays interest at an annual rate of 4%. Supposing that no money is added to or withdrawn from the account, a) how much will be in the account after 3 years?
b) how much will be in the account after 18 years?
4) Suppose you invest $\$ 2000$ in a savings account that pays interest at an annual rate of 4%. Supposing that no money is added to or withdrawn from the account,
a) how many years will it take for the account to contain $\$ 2500$?
b) how many years will it take for the account to contain $\$ 3000$?

Write an exponential function to model each situation. Then find each amount after the specified time.

5) A population of 120,000 grows 1.2% per year for 15 years.
6) A car is valued at $\$ 25,000$. After it is purchased, it loses 12% of its value each year. What is the value of the car after 5 years?
7) A population of $1,860,000$ decreases 1.5% each year for 12 years.
8) A car is valued at $\$ 16,000$. After it is purchased, it loses 8% of its value each year. What is the value of the car after 8 years?

Use the graph of $\boldsymbol{y}=\boldsymbol{e}^{\boldsymbol{x}}$ to evaluate each expression to 4 decimal places.
9) e^{6}
10) e^{e}

Find the amount in a continuously compounded account for the given conditions.
11) principal: $\$ 2000$
annual interest rate: 5.1%
time: 3 years
13) A student wants to save $\$ 8000$ for college in 5 years. How much should be put into an account that pays 5.2% annual interest compounded continuously?

Sketch the graph of each function.
15) $y=3 \cdot 2^{x}$

12) principal: $\$ 400$
annual interest rate: 7.6\%
time: 1.5 years
14) How long would it take to double your principal in an account that pays 6.5% annual interest compounded continuously?
17) $y=4 \cdot\left(\frac{1}{2}\right)^{x+1}+1$

19) $y=\frac{1}{3} \cdot 6^{x+2}-1$

18) $y=5 \cdot 2^{x-2}+1$

20) $y=2 \cdot\left(\frac{1}{3}\right)^{x+1}-2$

